Ultrafast ligand rebinding in the heme domain of the oxygen sensors FixL and Dos: general regulatory implications for heme-based sensors.
نویسندگان
چکیده
Heme-based oxygen sensors are part of ligand-specific two-component regulatory systems, which have both a relatively low oxygen affinity and a low oxygen-binding rate. To get insight into the dynamical aspects underlying these features and the ligand specificity of the signal transduction from the heme sensor domain, we used femtosecond spectroscopy to study ligand dynamics in the heme domains of the oxygen sensors FixL from Bradyrhizobium japonicum (FixLH) and Dos from Escherichia coli (DosH). The heme coordination with different ligands and the corresponding ground-state heme spectra of FixLH are similar to myoglobin (Mb). After photodissociation, the excited-state properties and ligand-rebinding kinetics are qualitatively similar for FixLH and Mb for CO and NO as ligands. In contrast to Mb, the transient spectra of FixLH after photodissociation of ligands are distorted compared with the ground-state difference spectra, indicating differences in the heme environment with respect to the unliganded state. This distortion is particularly marked for O(2). Strikingly, heme-O(2) recombination occurs with efficiency unprecedented for heme proteins, in approximately 5 ps for approximately 90% of the dissociated O(2). For DosH-O(2), which shows 60% sequence similarity to FixLH, but where signal detection and transmission presumably are quite different, a similarly fast recombination was found with an even higher yield. Altogether these results indicate that in these sensors the heme pocket acts as a ligand-specific trap. The general implications for the functioning of heme-based ligand sensors are discussed in the light of recent studies on heme-based NO and CO sensors.
منابع مشابه
Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction.
The FixL proteins are biological oxygen sensors that restrict the expression of specific genes to hypoxic conditions. FixL's oxygen-detecting domain is a heme binding region that controls the activity of an attached histidine kinase. The FixL switch is regulated by binding of oxygen and other strong-field ligands. In the absence of bound ligand, the heme domain permits kinase activity. In the p...
متن کاملSignal transduction by heme-containing PAS-domain proteins.
The most common physiological strategy for detecting the gases oxygen, carbon monoxide, and nitric oxide is signal transduction by heme-based sensors, a broad class of modular proteins in which a heme-binding domain governs the activity of a neighboring transmitter domain. Different structures are possible for the heme-binding domains in these sensors, but, so far, the Per-ARNT-Sim motif, or PA...
متن کاملBiological sensors: More than one way to sense oxygen
Recently determined structures of the oxygen-sensing heme domain of the bacterial protein FixL have revealed a new binding environment and signal transduction mechanism for heme; they have also provided new insights into the diverse 'PAS' domain superfamily.
متن کاملADP reduces the oxygen-binding affinity of a sensory histidine kinase, FixL: the possibility of an enhanced reciprocating kinase reaction.
The rhizobial FixL/FixJ system, a paradigm of heme-based oxygen sensors, belongs to the ubiquitous two-component signal transduction system. Oxygen-free (deoxy) FixL is autophosphorylated at an invariant histidine residue by using ATP and catalyzes the concomitant phosphoryl transfer to FixJ, but oxygen binding to the FixL heme moiety inactivates the kinase activity. Here we demonstrate that AD...
متن کاملInvited Review HIGHLIGHTED TOPIC Oxygen Sensing in Health and Disease Signal transduction by heme-containing PAS-domain proteins
Gilles-Gonzalez, Marie-Alda, and Gonzalo Gonzalez. Signal transduction by heme-containing PAS-domain proteins. J Appl Physiol 96: 774–783, 2004; 10.1152/japplphysiol.00941.2003.—The most common physiological strategy for detecting the gases oxygen, carbon monoxide, and nitric oxide is signal transduction by heme-based sensors, a broad class of modular proteins in which a heme-binding domain gov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 20 شماره
صفحات -
تاریخ انتشار 2002